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Abstract—In a cluttered target tracking environment multiple
hypotheses tracking (MHT) based algorithms improves the data
association by considering a batch of measurements. To reduce
the computational complexity generated by the exponential
growth of hypotheses the number of hypotheses is limited to k in
the k best MHT algorithm. The decision of which target belongs
to which measurement is taken in K-best MHT algorithm using
N scans of measurements.

The value of k and the number of scans N are fixed in
general for simple and complex scenario as well. This paper
proposes a method to keep the value of k and N dynamic
depending on the scenario complexity and also depending on the
likelihood of the valid hypotheses. If the maximum value of the
likelihood of the hypotheses is lower than a threshold it indicates
that the association decisions embedded in the hypotheses is not
appropriate. The likelihood threshold is a pre computed value
based on a statistical measure proposed in this paper depending
on scenario.

The proposed algorithm adaptively increases the number of
k best hypotheses or the number of scans N to improve the
maximum value of the likelihood of the hypotheses. Using this
adaptive mechanism the computational complexity of the k
best algorithm based MHT implementation is kept at low for
less ambiguous data association scenarios. The decision on the
adaptive value of N and k are obtained using the proposed
method in this paper.

The Monte Carlo simulation results carried out in this paper
justifies the advantage of the proposed method compared to the
fixed k-best MHT algorithm.
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I. INTRODUCTION

Tracking multiple targets, especially closely-spaced targets
inevitably introduces the possibility of miscorrelation where
a sensor plot may be incorrectly used to update a track that
is following a different object. Multiple hypothesis tracking
(MHT) is a deferred decision logic in which alternative track
hypotheses are formed whenever there are potential track-to-
plot assignment conflicts. That is in the event that a sensor
measurement passes the gates of more than one track, all of
those hypotheses are maintained until later sensor measure-
ments arrive to resolve the situation. This approach is clearly
very attractive in multi-target scenarios, in that a near optimal
solution is possible. The full MHT approach however requires
the maintenance of numerous such track branches and in dense

target environment the number of such branches will grow
exponentially. This in turn requires very rigorous pruning of
redundant or incorrect branches to maintain the load within the
manageable limits. So MHT is only practical to use for a fairly
small number of targets, even when pruning is employed. It is
largely in the view of these computational considerations that
practical tracking systems have, tends to implement cheaper
alternatives such as GNN and JPDA approach.

Pruning is essential to any practical implementation of
MHT algorithm. For pruning we use k-best and N-scan back
pruning. The N-scan algorithm assumes that any ambiguity at
scan S is resolved by scan S + N. The probabilities of the
leaf nodes are calculated for each branch of hypotheses tree.
Whichever branch has the greatest probability is retained. A
larger N implies a larger window hence the solution can be
more accurate, but makes the running time longer. Another
disadvantage of the MHT method is that the data association
decision is often deferred which can likely be overcome by
using the most probable best current hypothesis up to the
current time.

One advantage of MHT method is that it provides a system-
atic track initiation procedure. Another advantage of the MHT
method is that it is most likely to have the correct association
solution as one of its hypothesis with best cost.

The assignment problem can be generalized to enumerate
the first k-best assignments. Listing solutions by order of cost
is used in the generation of alternative solutions. The effi-
ciency of ranking algorithm is extremely important as several
solutions have to be ranked. Recent work in MHT proves
that with optimized implementation of Murtys algorithm real
time multi-target tracking is feasible with MHT in some
circumstances.

II. RELATED RESEARCH

In[1], an algorithm that efficiently generates the k-best
solutions in assignment problems, called the Murty’s algo-
rithm, was proposed. Murty’s algorithm has been widely used
to generate the k-best assignments in multi target tracking,
making the MHT feasible in practice. In[6], three optimized
implementations of Murty’s algorithm in which the input cost
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matrix for Murty’s algorithm is formed by appending dummy
values to the standard target-to-measurement cost matrix are
discussed. The proposed algorithm substantially reduced its
complexity from O(mn4) to O(mn3). The types of problems
in data association for tracking are track initiation, track
continuation and track fusion. Among many track continuation
algorithms, it is well known that MHT performs much better
than other methods like nearest neighbor or PDA(which have
a time window of depth 1), due to its time window when
there is heavy clutter or track ambiguity, i.e.,when tracks are
very close or cross each other. The idea behind MHT is to
maintain several track-to-measurement association hypotheses
over its time window, some of which may have low likelihood
but might later become the most likely after some frames of
measurements have been added[18]. Fig.1 outlines the basic

Fig. 1: MHT k-best Algorithm flow chart

operation of the MHT k-best algorithm. An iteration begins
with the set of current hypotheses from iteration (t − 1).
Each hypothesis represents a different set of assignments
of measurements to features[11]. K-best assignments are
generated from the given ambiguity matrix, which concisely
models the ambiguities present in assigning measurements
to tracks[11]. Pruning is based on a combination of an N -
scan-back algorithm. The N -scan-back algorithm assumes
that any ambiguity at time k is resolved by time k + N .
Thus if hypothesis Ωk at time k has q children, the sum
of the probabilities of the lead nodes is calculated for each
of the q branches and whichever branch has the greatest
probability is retained[20]. In order to evaluate the hypotheses
Reid recursively defines a posterior probability of a hypothesis

Ωi at time k given a set of new measurements as [1]

P k
Ωi

=
1

c
PNDT

D (1− PD)(NTGT−NDT )βNFT

FT βNNT

NT

×

[
NDT∏
m=1

N(Zm −Hxj
, Pj)

]
Pp(Ωi

)k−1 (1)

Where P k
Ωi

is the hypothesis probability, Pp(Ωi
)k−1 is

probability of parent hypothesis at time (k − 1), PD is the
detection rate, βNT and βFT are the new target and false
target density, NTGT , NDT , NFT and NNT represent current
hypothesis configuration parameters and c is normalization
constant. The likelihood to assign a measurement m to track
j is modelled by the normal distribution N of its kalman filter
with its state xj and Pj . Thus the measurements are assumed
to be indistinguishable and the likelihood of assignment to a
track only depends on their position. In order to prevent the
set of hypotheses from growing exponentially over time, the
unlikely ones are pruned at every time-step to a fixed maximal
cardinality kmax. Many schemes have been developed to
control the computational burden of MHT type methods by
limiting the selection of assignment sequences to the most
likely. Such pruning methods, however inevitably sacrifice any
optimality property of the full algorithm. A generalization
of Murtys algorithm for ranking k-best bipartite assignment
problems and its application to track-oriented MHT systems
was discussed in [19]

III. MODIFIED MHT ALGORITHM WITH ADAPTIVE
SELECTION OF K-VALUE

The focus of this work is on track continuation or track
maintenance. Our main aim is to reduce the track deviation
and track loss in real-time multi-target tracking by dynamically
changing the k value without incurring much additional com-
putational cost. We initially form clusters of tracks which are
spatially separated and which do not share any measurements
in common. Clustering helps for doing parallel processing and
reduces the amount of required memory and computation time
significantly.

Keeping k-value big increases the execution time and in-
creases the complexity of the data association algorithm.

Low value of k may not be sufficient to resolve ambiguities
arising during the data association process which lead to track
deviation and track loss. Fixed value of k for the entire
scenario is not a suitable option in multi target tracking.

So choosing k-value is crucial decision in track continuation
for multi target tracking. Fixed number of k may not suit
for every scenario of tracking. In this paper we propose a
new algorithm with dynamic k-value for Multi target tracking.
Initial decision of k-value depends on the number of tracks
and valid measurements in the tracking region. That is we
generate almost all feasible hypotheses in order to get the
threshold value for the first few scans. Usually during tracking
the confusion arises at few places. Otherwise with a modest
number of k-best hypotheses are good enough for smooth
target tracking. Because of the wrong data associations at few
places lead to track deviation or track loss.
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First we need to identify places where the given data
association may lead to track deviation. Once we identify
the area, we can go back n scans and recalculate the of
hypothesis tree with increased k value which may resolve the
ambiguity and then avoids track deviation. By recalculating the
hypothesis tree with increased k-value may help to recover
the hypothesis with best cost which was not covered with
modest k value. This may result in reduced cost of best global
hypothesis. The increment of k can be done in small steps.

Suppose at the current scan we have calculated m best
hypotheses but the (m+ 1) hypothesis may be the best one in
future scans. It may happen because all the first m hypotheses
which are formed are from mismatched associations. For the
rest of the scenario k value remains some average value.

A global hypothesis is formed from a parent hypothesis and
a current association. This joint event is made cumulative,
conditioned upon the sequence of measurements up to the
current time t. The posterior probability of this cumulative
joint event is given by Blackman and popoli.

Cost of global hypothesis = cost of an assignment + parent
hypothesis cost

c(Ωt
i) = c(ai) + c(Ωt−1

pi
)

We define delta as
∆ = c(Ωi)-c(Ωi−1), where c(Ωi) is cost of best global hypoth-
esis at scan i.

The best global hypotheses have the lowest total costs.
Our objective is to minimize the function c(ai) + c(Ωt−1

pi
).

The problem is a synonymous to travelling salesman problem
which is standard NP hard problem. So we adopt sub-optimal
method to solve the problem.

We define threshold as a permissible value increase of cost
of best global hypothesis from scan to scan. The global hy-
potheses are typically compared using a cost function based on
the negative log likelihoods of each assignment. Determining
the single best assignment is then a matter of determining the
assignment that minimizes this sum.

To calculate the threshold value initial few scans we gener-
ate all the possible hypotheses in each scan. If M is the valid
number of measurements and T is number of targets then the
size of the feasible solution space A is i.e., The number of
data association assignments as derived in [10,17] is

|A| =
min(T,M)∑

j=1

M !T !

j!(M − j)!(T − j)!

Threshold is obtained by averaging the increase in best
global hypothesis cost in each scan. If the given scenario
is going for recalculation frequently then we increase the
threshold value based on the average delta value. Cost of an
assignment denoted by c(ai), can be determined by summing
the individual costs corresponding to the S-tuples occurring in
the assignment.i.e.,

c(ai) =
∑

i1,i2,i3,...,is

ci1 ...cis

IV. PSEUDO CODE
Step 1. For the first s-scans k value is equal to the size of

feasible solution space A or some big value.
Step 2. Calculate Delta (∆) of each scan as ∆ = cost of the

best global hypothesis at the time t − cost of the best
global hypothesis at the time (t-1)

Step 3. Threshold(δ) = Average value of ∆ for the first s -
scans.

Step 4. Let K be some modest value
Step 5. Let Ωt−1 are the global Hypotheses at time t -1
Step 6. For each hypothesis generate predictions. Generate K-

best hypotheses for each Hypothesis at time t-1 by using
valid measurements at time t.

Step 7. Calculate the Cost of the global hypotheses. Calculate
Delta value of the best global hypothesis at time t

Step 8. If (∆ > δ) and not recalculated then go back n scans
and each scan generate all possible hypotheses from each
hypothesis for back n scans.

Step 9. Do hypotheses pruning and merging, we keep top m
hypotheses, where m is determined by the size of problem
and the characteristics of application. Go to step 5.

V. EXPERIMENTAL RESULTS

The results presented in this section correspond to a simple
problem where T = 4 targets, three targets are moving in
straight line formation and another target is crossing over these
three targets. The targets are considered to travel with constant
velocity. The sampling time is t = 1sec. In our simulations
the normalizing constant is dropped and comparisons are made
between the association likelihoods. As a simple scenario we
have created four closely moving targets, with PD = 0.9 and
with some clutter. We have compared the number of deviations
and time of computation for k = 1, k = 2, k = 3 and k = 4 in
Table 1.We run the scenario for 100 scans. We have generated
random data using some measurement noise. For calculating
threshold value we kept K value as feasible hypotheses size
which depends on the number targets and number of valid
measurements in the current scan, for first 10 scans. For some
runs we fixed this value to 5. For the rest of the 90 scans
k = 2. Whenever the delta exceeds threshold value we go
back by 5 scans and recalculate the hypothesis tree. We have
incremented k in steps of 2. As a simple pruning method we
have kept top 5 hypotheses and ignore the rest. We run a
scenario with some simulated data with fixed k = 2 and the
results are shown in fig.2. The run time is 6.04 seconds. We
have run the scenario with same data using dynamic value of k
value and the results are shown in fig.3. For the given scenario
fixed value of k = 2 could not handle the scenario. By using
our new approach of Dynamic value of k could resolve the
ambiguities by dynamically changing the k value when ever
deviation starts and run time is 10.508 seconds.

Fig.4 is another scenario with k = 3. The ambiguity at
one or two places caused the two tracks deviation as shown
in the figure. The run time of this scenario is 6.04 seconds.
Fig.5 shows that dynamic value of k successfully handle the
confusion. The run time is 10.34 seconds. The simulation
results for 4 tracks, 100 scans, 100 Monte Carlo trials are
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Fig. 2: MHT, With fixed k=2
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Fig. 3: MHT, with Dynamic k value

shown in the Table.1. As the Table.1. indicates as K increases
the time of execution increases and the deviation were reduced.
We define deviation as if one target deviate from actual path
by some threshold distance. Usually once a target is deviated
for some scans its deviated in the entire scenario. In the fig.6
we have shown the comparison of best hypothesis cost at each
scan using fixed k value and dynamically changing k. We have
compared hypotheses using negative log likelihood value. Best
hypothesis is the one with minimum value. Time comparison
between fixed k and dynamic k value approach is shown in
the fig.7. Whenever there is confusion time is increased for
recalculation of tree with increased k value in the given scan.
In fig.8 we have shown how k value is variation for a given
100 scan run. For Fig.2,3,4 and 5 x-axis and y-axis are labelled
as the position of targets in meters.
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Fig. 4: MHT, With fixed k=3
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Fig. 5: MHT, with Dynamic k value

VI. CONCLUSION

In this paper we have presented a new approach to solve
multi-target data assignment problem in clutter environment
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Fig. 6: Best Global Hypothesis cost comparison
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using MHT. We have showed the improved results using
dynamic k number of hypothesis generation which potentially
enhance the performance of MHT algorithm. We can extent
this approach to generalized scenarios.
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